A Novel Approach to Predict the Early Childhood Special Education Learning Skills of Autistic Children Using Ensemble Machine Learning

Yolvi J. Ocaña-Fernández, Walter Gómez-Gonzales, Luis Alex Valenzuela Fernández, Segundo Pio Vásquez Ramos, Huguette Fortunata Dueñas Zúñiga, Jackeline Roxana Huaman Fernandez, Marco Antonio Amapanqui Broncano

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

Children with autism spectrum disorder will eventually receive more extensive educational experiences, diverse understanding styles, any distinctive instructional techniques to help all infants achieve. Data mining categorization algorithms in the Weka tool are used to anticipate and forecast infants' performance with Autism Spectrum Disorder (ASD). As a decision-making tool for improving the performance of autistic youngsters, data mining is widely acknowledged. Support Vector Machines (SVMs), Logistic Regression (LR), and Naive Bayes (NB) are some of the techniques that can be used for categorization. The categorization model's outcomes include information on the model's accuracy, error rate, confusion matrices, classifier effectiveness, and execution time.

Idioma originalInglés
Páginas (desde-hasta)59-65
Número de páginas7
PublicaciónJournal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
Volumen14
N.º2
DOI
EstadoPublicada - jun. 2023
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2023, Innovative Information Science and Technology Research Group. All rights reserved.

Huella

Profundice en los temas de investigación de 'A Novel Approach to Predict the Early Childhood Special Education Learning Skills of Autistic Children Using Ensemble Machine Learning'. En conjunto forman una huella única.

Citar esto