Abstract
In this work, an in-depth analysis providing the optimal parameters estimation for discrete wavelet transform (DWT) applied to detection of series arc faults in the household AC power network is presented. The influence of three parameters was investigated: the choice of mother wavelet, level of decomposition and sampling frequency. The line current was used as input for all analyses. A performance criterion based on the energy computation of line currents with and without arc faults was defined and used to compare the influence of 550 combinations of these three parameters on the arc fault detection performances for different loads, including two household appliances. The study showed that the right choice of these three parameters greatly influences the arc fault detection performances. Moreover, for each tested load a frequency range providing maximal arc fault detection performances is identified. The study showed also that the choice of the mother wavelet is less critical than the two other parameters.
Original language | English |
---|---|
Pages (from-to) | 130-139 |
Number of pages | 10 |
Journal | Electric Power Systems Research |
Volume | 143 |
DOIs | |
State | Published - 1 Feb 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier B.V.
Keywords
- Arcing fault
- Discrete wavelet transform (DWT)
- Household power network
- Series arc fault detection